Beta Diversity Functions
Beta diversity is a fundamental concept in ecology that quantifies the variation in species composition between different plots, or over time. In the context of metacommunity analysis, beta diversity functions help to assess how community composition changes spatially across different locations or temporally within a metacommunity.
The beta_diversity
functions in MetaCommunityMetrics
are adapted from the beta.div.comp
function in the R package adespatial
. These methods, originally developed by Pierre Legendre (2014), are implemented in Julia to provide a more efficient means of computation for large-scale datasets. The functions use indices from the Podani family, Jaccard-based indices, and Ruzicka-based indices to calculate total beta diversity and its components: replacement and richness difference.
Choosing the Right Function
- Use
beta_diversity
for a general, comprehensive measure of beta diversity across your dataset. This function provides an overall assessment of how species composition varies between sites or over time, capturing both replacement (the turnover of species) and richness difference(the difference in species richness). - Use
spatial_beta_div
to comparing diversity between different spatial locations of a metacommunity. - Use
temporal_beta_div
to track how diversity changes over time of a metacommunity.
The Functions
MetaCommunityMetrics.beta_diversity
— Functionbeta_diversity(mat::Matrix; quant::Bool) -> DataFrame
Calculate beta diversity for a given biodiversity data. This function supports both binary (presence/absence) and quantitative data.
Arguments
mat::Matrix
: A matrix where each row represents a sample and each column represents a species. The elements of the matrix should represent the presence/absence or abundance of species.quant::Bool
: A boolean flag that specifies whether the data is quantitative. By default, it is set tofalse
, which means the data will be treated as binary. In this case, any quantitative data will be converted to binary, and beta diversity is calculated using the Podani family’s Jaccard-based indices. Iftrue
, the data is treated as quantitative, and beta diversity is calculated using the Podani family’s Ruzicka-based indices. For binary data,quant
must remain set tofalse
.
Returns
DataFrame
: A DataFrame with the following columns:BDtotal
: Total beta diversity, which captures the overall dissimilarity between local communities.Repl
: Replacement component of diversity, which reflects how many species are different in one site compared to another, ignoring the species that are mere additions or subtractions.RichDif
: Richness difference component of diversity, which captures the disparity in biodiversity in terms of the count of species present, without taking into account the specific identities or distributions of those species.
Details
- Empty patches have to be removed before calculation.
- Species that were not recorded at the given time step have to be removed before calculation.
- For binary data, the function calculates Podani family, Jaccard-based indices.
- For quantitative data, the function calculates Podani family, Ruzicka-based indices.
- This function is a translation/adaptation of the beta.dov.comp function from the R package
adespatial
,licensed under GPL-3. - Original package and documentation available at: https://cran.r-project.org/web/packages/adespatial/index.html
Example
julia> using MetaCommunityMetrics, Pipe, DataFrames
julia> df = load_sample_data()
48735×10 DataFrame
Row │ Year Month Day Sampling_date_order plot Species Abundance Presence Latitude Longitude
│ Int64 Int64 Int64 Int64 Int64 String3 Int64 Int64 Float64 Float64
───────┼────────────────────────────────────────────────────────────────────────────────────────────────────
1 │ 2010 1 16 1 1 BA 0 0 35.0 -110.0
2 │ 2010 1 16 1 2 BA 0 0 35.0 -109.5
3 │ 2010 1 16 1 8 BA 0 0 35.5 -109.5
4 │ 2010 1 16 1 9 BA 0 0 35.5 -109.0
5 │ 2010 1 16 1 11 BA 0 0 35.5 -108.0
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
48731 │ 2023 3 21 117 9 SH 0 0 35.5 -109.0
48732 │ 2023 3 21 117 10 SH 0 0 35.5 -108.5
48733 │ 2023 3 21 117 12 SH 1 1 35.5 -107.5
48734 │ 2023 3 21 117 16 SH 0 0 36.0 -108.5
48735 │ 2023 3 21 117 23 SH 0 0 36.5 -108.0
48725 rows omitted
julia> matrix_with_abundance = @pipe df |>
filter(row -> row[:Sampling_date_order] == 1, _) |>
select(_, Not(:Presence)) |>
unstack(_, :Species, :Abundance, fill=0) |>
select(_, Not(:Year, :Month, :Day, :Sampling_date_order, :plot, :Longitude, :Latitude)) |>
Matrix(_) |>
x -> x[:, sum(x, dims=1)[1, :] .!= 0] |>
x -> x[vec(sum(x, dims=2)) .!= 0, :]
15×5 Matrix{Int64}:
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
2 0 0 0 0
1 0 0 1 0
4 0 0 1 0
1 0 0 0 0
0 1 0 0 1
0 0 0 1 0
0 0 0 2 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
julia> matrix_with_presence = @pipe df |>
filter(row -> row[:Sampling_date_order] == 1, _) |>
select(_, Not(:Abundance)) |>
unstack(_, :Species, :Presence, fill=0) |> #convert it back to the wide format
select(_, Not(:Year, :Month, :Day, :Sampling_date_order, :plot, :Longitude, :Latitude)) |>
Matrix(_) |>
x -> x[:, sum(x, dims=1)[1, :] .!= 0]
15×5 Matrix{Int64}:
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 1 0
1 0 0 1 0
1 0 0 0 0
0 1 0 0 1
0 0 0 1 0
0 0 0 1 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
0 0 0 0 1
julia> result_using_abanduce_data_1 = beta_diversity(matrix_with_abundance; quant=true)
1×3 DataFrame
Row │ BDtotal Repl RichDif
│ Float64 Float64 Float64
─────┼─────────────────────────────
1 │ 0.390317 0.2678 0.122517
julia> result_using_abanduce_data_2 = beta_diversity(matrix_with_abundance; quant=false)
1×3 DataFrame
Row │ BDtotal Repl RichDif
│ Float64 Float64 Float64
─────┼───────────────────────────────
1 │ 0.357143 0.284127 0.0730159
julia> result_using_binary_data = beta_diversity(matrix_with_presence; quant=false)
1×3 DataFrame
Row │ BDtotal Repl RichDif
│ Float64 Float64 Float64
─────┼───────────────────────────────
1 │ 0.357143 0.284127 0.0730159
MetaCommunityMetrics.spatial_beta_div
— Functionspatial_beta_div(abundance::AbstractVector, time::AbstractVector, patch::Union{AbstractVector, String}, species::Union{AbstractVector, String}; quant::Bool) -> DataFrame
Calculate the beta diversity decompositions of a metacommunity in space based on species abundances or presence-absences using the function beta_diversity
.
Arguments
abundance::Vector
: A vector containing abundance data for each species across different samples.time::Vector
: A vector indicating the time each sample was taken.patch::Vector
: A vector indicating the spatial location (patch) of each sample.species::Vector
: A vector indicating the species associated with each abundance entry.quant::Bool
: A boolean flag that specifies whether the data is quantitative. By default, it is set tofalse
, which means the data will be treated as binary. In this case, any quantitative data will be converted to binary, and beta diversity is calculated using the Podani family’s Jaccard-based indices. Iftrue
, the data is treated as quantitative, and beta diversity is calculated using the Podani family’s Ruzicka-based indices. For binary data,quant
must remain set tofalse
.
Returns
DataFrame
: A DataFrame containing the values of total beta diversity, replacement, and richness difference components in space. Columns arespatial_BDtotal
,spatial_Repl
, andspatial_RichDif
.
Details
- This function uses the
beta_diversity
function to calculate beta diversity components after aggregating . - For binary data, the function calculates Podani family, Jaccard-based indices.
- For quantitative data, the function calculates Podani family, Ruzicka-based indices.
- The beta diversity decompositions of a metacommunity in space is a set of metrics suggested by Guzman et al. (2022) to infer metacommunity processes.
Example
julia> using MetaCommunityMetrics, Pipe, DataFrames
julia> df = load_sample_data()
48735×10 DataFrame
Row │ Year Month Day Sampling_date_order plot Species Abundance Presence Latitude Longitude
│ Int64 Int64 Int64 Int64 Int64 String3 Int64 Int64 Float64 Float64
───────┼────────────────────────────────────────────────────────────────────────────────────────────────────
1 │ 2010 1 16 1 1 BA 0 0 35.0 -110.0
2 │ 2010 1 16 1 2 BA 0 0 35.0 -109.5
3 │ 2010 1 16 1 8 BA 0 0 35.5 -109.5
4 │ 2010 1 16 1 9 BA 0 0 35.5 -109.0
5 │ 2010 1 16 1 11 BA 0 0 35.5 -108.0
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
48731 │ 2023 3 21 117 9 SH 0 0 35.5 -109.0
48732 │ 2023 3 21 117 10 SH 0 0 35.5 -108.5
48733 │ 2023 3 21 117 12 SH 1 1 35.5 -107.5
48734 │ 2023 3 21 117 16 SH 0 0 36.0 -108.5
48735 │ 2023 3 21 117 23 SH 0 0 36.5 -108.0
48725 rows omitted
julia> result_using_abanduce_data_1 = spatial_beta_div(df.Abundance, df.Sampling_date_order, df.plot, df.Species; quant=true)
1×3 DataFrame
Row │ spatial_BDtotal spatial_Repl spatial_RichDif
│ Float64 Float64 Float64
─────┼────────────────────────────────────────────────
1 │ 0.264822 0.121882 0.142939
julia> result_using_abanduce_data_2 = spatial_beta_div(df.Abundance, df.Sampling_date_order, df.plot, df.Species; quant=false)
1×3 DataFrame
Row │ spatial_BDtotal spatial_Repl spatial_RichDif
│ Float64 Float64 Float64
─────┼────────────────────────────────────────────────
1 │ 0.133035 0.05976 0.0732746
julia> result_using_binary_data = spatial_beta_div(df.Presence, df.Sampling_date_order, df.plot, df.Species; quant=false)
1×3 DataFrame
Row │ spatial_BDtotal spatial_Repl spatial_RichDif
│ Float64 Float64 Float64
─────┼────────────────────────────────────────────────
1 │ 0.133035 0.05976 0.0732746
MetaCommunityMetrics.temporal_beta_div
— Functiontemporal_beta_div(abundance::AbstractVector, time::AbstractVector, patch::Union{AbstractVector, String}, species::Union{AbstractVector, String};quant::Bool) -> DataFrame
Calculate the beta diversity decompositions of a metacommunity in time based on species abundances or presence-absences using the function beta_diversity
.
Arguments
abundance::Vector
: A vector containing abundance data for each species across different samples.time::Vector
: A vector indicating the time each sample was taken.patch::Vector
: A vector indicating the spatial location (patch) of each sample.species::Vector
: A vector indicating the species associated with each abundance entry.quant::Bool
: A boolean flag that specifies whether the data is quantitative. By default, it is set tofalse
, which means the data will be treated as binary. In this case, any quantitative data will be converted to binary, and beta diversity is calculated using the Podani family’s Jaccard-based indices. Iftrue
, the data is treated as quantitative, and beta diversity is calculated using the Podani family’s Ruzicka-based indices. For binary data,quant
must remain set tofalse
.
Returns
DataFrame
: A DataFrame containing the values of total beta diversity, replacement, and richness difference components in time. Columns aretemporal_BDtotal
,temporal_Repl
, andtemporal_RichDif
.
Details
- This function uses the
beta_diversity
function to calculate beta diversity components for each patch. - For binary data, the function calculates Podani family, Jaccard-based indices.
- For quantitative data, the function calculates Podani family, Ruzicka-based indices.
- The beta diversity decompositions of a metacommunity in time is a set of metrics suggested by Guzman et al. (2022) to infer metacommunity processes.
Example
julia> using MetaCommunityMetrics, Pipe, DataFrames
julia> df = load_sample_data()
48735×10 DataFrame
Row │ Year Month Day Sampling_date_order plot Species Abundance Presence Latitude Longitude
│ Int64 Int64 Int64 Int64 Int64 String3 Int64 Int64 Float64 Float64
───────┼────────────────────────────────────────────────────────────────────────────────────────────────────
1 │ 2010 1 16 1 1 BA 0 0 35.0 -110.0
2 │ 2010 1 16 1 2 BA 0 0 35.0 -109.5
3 │ 2010 1 16 1 8 BA 0 0 35.5 -109.5
4 │ 2010 1 16 1 9 BA 0 0 35.5 -109.0
5 │ 2010 1 16 1 11 BA 0 0 35.5 -108.0
⋮ │ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
48731 │ 2023 3 21 117 9 SH 0 0 35.5 -109.0
48732 │ 2023 3 21 117 10 SH 0 0 35.5 -108.5
48733 │ 2023 3 21 117 12 SH 1 1 35.5 -107.5
48734 │ 2023 3 21 117 16 SH 0 0 36.0 -108.5
48735 │ 2023 3 21 117 23 SH 0 0 36.5 -108.0
48725 rows omitted
julia> result_using_abanduce_data_1 = temporal_beta_div(df.Abundance, df.Sampling_date_order, df.plot, df.Species; quant=true)
1×3 DataFrame
Row │ temporal_BDtotal temporal_Repl temporal_RichDif
│ Float64 Float64 Float64
─────┼───────────────────────────────────────────────────
1 │ 0.311222 0.0995483 0.211674
julia> result_using_abanduce_data_2 = temporal_beta_div(df.Abundance, df.Sampling_date_order, df.plot, df.Species; quant=false)
1×3 DataFrame
Row │ temporal_BDtotal temporal_Repl temporal_RichDif
│ Float64 Float64 Float64
─────┼───────────────────────────────────────────────────
1 │ 0.206262 0.0693664 0.136895
julia> result_using_binary_data = temporal_beta_div(df.Presence, df.Sampling_date_order, df.plot, df.Species; quant=false)
1×3 DataFrame
Row │ temporal_BDtotal temporal_Repl temporal_RichDif
│ Float64 Float64 Float64
─────┼───────────────────────────────────────────────────
1 │ 0.206262 0.0693664 0.136895
References
- Guzman, L. M. et al. Accounting for temporal change in multiple biodiversity patterns improves the inference of metacommunity processes. Ecology 103, e3683 (2022). https://doi.org:https://doi.org/10.1002/ecy.3683
- Legendre, P. Interpreting the replacement and richness difference components of beta diversity. Global Ecology and Biogeography 23, 1324-1334 (2014). https://doi.org:https://doi.org/10.1111/geb.12207